Derivatives of Polynomials with Positive Coefficients ${ }^{1}$

G. G. Lorentz
Department of Mathematics, Syracuse University, Syracuse, New York 13210

The paper [1] contains the following result. There exists a constant $C>0$ such that for each polynomial of the form $P_{n}(x)=\sum_{0}^{n} b_{k} x^{k}(1-x)^{n-k}, b_{k} \geqslant 0$,

$$
\begin{equation*}
\left\|P_{n}^{\prime}\right\| / /\left\|P_{n}\right\| \leqslant C n, \quad n=1,2, \ldots, \tag{1}
\end{equation*}
$$

for the uniform norm on $[0,1]$. This relation can also be written

$$
\begin{equation*}
\frac{\left\|P_{n}^{\prime}\right\|}{\left\|P_{n}\right\|} \leqslant C \frac{\left\|p_{n}^{\prime}\right\|}{\left\|p_{n}\right\|} \tag{2}
\end{equation*}
$$

where p_{n} are the special polynomials $p_{n}(x)=x^{n}$.
In particular, (1) holds for polynomials with positive coefficients in x,

$$
P_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}, \quad a_{k} \geqslant 0 .
$$

This follows from (1), but also immediately, since with P_{n}, also $P_{n}{ }^{\prime}$ is a polynomial with positive coefficients, and since for such $P_{n},\left\|P_{n}\right\|=P_{n}(1)$. In the present note we prove the inequality (2) for the infinite interval ($0,+\infty$), and for a supremum norm with weight. The norm of a function f on $(0,+\infty)$ is given by

$$
\begin{equation*}
\|f\|=\sup _{x \geqslant 0}\left|f(x) e^{-\omega(x)}\right|, \tag{3}
\end{equation*}
$$

where ω increases on $(0,+\infty)$. In addition to some mild smoothness requirements for ω, we shall assume that ω does not increase too slowly. Thus, Theorem 2 allows $\omega(x)=\log ^{p} x, p>1$, but functions $\omega(x)=A \log x$ are, of course, excluded.

In what follows, we shall assume that $\omega(x)$ is a positive differentiable function, defined for $0 \leqslant x<+\infty$, increasing strictly to $+\infty$, and such that also $x \omega^{\prime}(x)$ strictly increases to $+\infty$. For each $n=0,1, \ldots$, the maximum of $x^{n} e^{-\omega(x)}$ is attained at a unique point $x=x_{n}$, given by

$$
\begin{equation*}
n=x_{n} \omega^{\prime}\left(x_{n}\right) . \tag{4}
\end{equation*}
$$

[^0]We have $x_{n} \Rightarrow+\infty$ as $n \rightarrow x$. Another remark is that the behavior of $\left|._{n} p_{n}^{\prime \prime}\right|\left|\mid p_{n}{ }^{\prime \prime}\right.$ is very much like that of $n_{i}^{\prime} x_{n}=\omega^{\prime}\left(x_{n}\right)$:

$$
\begin{equation*}
\frac{n}{x_{n}} \leqslant \frac{\left\|p_{n}^{\prime}\right\|}{\left\|p_{n}\right\|} \leqslant \frac{n}{x_{n-1}}, \quad n=2,3, \ldots \tag{5}
\end{equation*}
$$

This follows from the inequalities

$$
\begin{aligned}
& \left\|p_{n}\right\|=\frac{x_{n}}{n} n x_{n}^{n-1} e^{-\omega\left(x_{n}\right)} \leqslant \frac{x_{n}}{n}\left\|p_{n}^{\prime}\right\|, \quad n \geqslant 1, \\
& \left.\left\|p_{n}^{\prime}\right\|=\frac{n}{x_{n-1}} x_{n-1}^{n} e^{-\omega\left(x_{n-1}\right)} \leqslant \frac{n}{x_{n-1}} \| p_{n}^{\prime} \right\rvert\,, \quad n \geqslant 2 .
\end{aligned}
$$

The following two theorems deal, roughly, with the cases when $\omega^{\prime}(x)$ increases and when it decreases.

Theorem 1. Let $\omega(x)$ satisfy the inequalities $\omega(x)-\omega(0) \leqslant A x \omega^{\prime}(x), x \geqslant 0$, and $\omega^{\prime}(y) \leqslant A \omega^{\prime}(x), y \leqslant x$, for some constant $A>0$. (Both conditions are satisfied if ω^{\prime} increases or if ω^{\prime} decreases, but remains bounded away from zero.) Then for some constant $C>0$, inequality (2) holds for each polynomial P_{n} with positive coefficients.

Theorem 2. Let $\varlimsup_{x \rightarrow \infty} \omega^{\prime}(x)<1$ and assume that for some $0<q<1$,

$$
\begin{equation*}
\omega(x) \leqslant q x \omega^{\prime}(x) \log \frac{1}{\omega^{\prime}(x)} \text { for all sufficiently large } x \text {. } \tag{6}
\end{equation*}
$$

Then for some constant $C>0$,

$$
\begin{equation*}
\frac{\left\|P_{n}^{\prime} \cdot\right\|}{\left\|P_{n}\right\|} \leqslant C, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

Note that if ω^{\prime} is bounded, then according to (5), $\| \boldsymbol{p}_{n}{ }^{\prime}:\left|/\left|\left|p_{n}\right| \leqslant\right.\right.$ Const. The proof depends upon the following

Lemma. Let $u_{k}=\frac{1}{2}(k+1)^{-2}$. There exists a $k_{0} \geqslant 1$ for which

$$
\begin{equation*}
\frac{x^{k} e^{-\omega(x)}}{\| p_{k}!\mid}<u_{k}, \quad k \geqslant k_{0}, \tag{8}
\end{equation*}
$$

if x and k satisfy $x<k$ in case of Theorem 2 and $x<c x_{k}$ in case of Theorem 1 (where $c>0$ is a constant).

Proof of the Lemma. Assume that (8) is violated for some k. Then

$$
\begin{equation*}
k \log \left(x / x_{k}\right)-\omega(x)+\omega\left(x_{k}\right) \geqslant \log u_{k} . \tag{9}
\end{equation*}
$$

In case of Theorem 1, we have $\omega\left(x_{k}\right)-\omega(x) \leqslant A x_{k} \omega^{\prime}\left(x_{k}\right)=A k$; hence (9) implies

$$
k \log \left(x / x_{k}\right) \geqslant-A k+\log u_{k} \geqslant-(A+1) k, \quad k \geqslant k_{0},
$$

hence $x / x_{k} \geqslant c, c=e^{-(A+1)}$.
Likewise, in the case of Theorem 2, there is, according to (6), a k_{0} so that, for $k \geqslant k_{0}$,

$$
\omega\left(x_{k}\right) \leqslant q k \log \frac{1}{\omega^{\prime}\left(x_{k}\right)}<k \log \frac{1}{\omega^{\prime}\left(x_{k}\right)}+\log u_{k} .
$$

Therefore, for $k \geqslant k_{0}$, (9) implies

$$
\begin{gathered}
k \log \left(x / x_{k}\right) \geqslant k \log \omega^{\prime}\left(x_{k}\right) \\
x \geqslant x_{k} \omega^{\prime}\left(x_{k}\right)=k .
\end{gathered}
$$

or

To complete the proof of the theorems, let $S=S(x, n)$ be the set of integers k which satisfy $k_{0}<k \leqslant n$ and the inequality $c x_{k-1} \leqslant x$ (in case of Theorem 1) or $k-1 \leqslant x$ (in case of Theorem 2). Let L be the remaining integers k with $k_{0}<k \leqslant n$.

For a polynomial with positive coefficients,

$$
P_{n}(t)=\sum_{0}^{n} a_{k} t^{k},
$$

we put

$$
Q_{n}(t)=\sum_{k_{0}<k \leqslant n} a_{k} t^{k}
$$

We can assume that $\| Q_{n} \mid>0$, for if $Q_{n}(t)$ vanishes, the following proof is simplified. Let x be such that $Q_{n}{ }^{\prime}(x)=\left\|Q_{n}{ }^{\prime}\right\|^{\prime}$ (obviously, $x_{1} \leqslant x \leqslant x_{n}$). Then

$$
\begin{align*}
& \left\|P_{n}{ }^{\prime}\right\| \leqslant \sum_{k \leqslant k 0} k a_{k}\left\|p_{k-1}\right\|+\left\|Q_{n}^{\prime \prime}\right\|=\Sigma_{1}+\left\|Q_{n}^{\prime}\right\| ; \tag{10}\\
& \left\|Q_{n}^{\prime \prime}\right\|=\sum_{k \in L} k a_{k} x^{k-1} e^{-\omega(x)}+\sum_{k \in S}=\Sigma_{2}+\Sigma_{3},
\end{align*}
$$

say. With $M=\max _{k \leqslant k_{0}}\left(k\left\|p_{k-1}|/ / /| p_{k}\right\|\right)$,

$$
\begin{equation*}
\Sigma_{1} \leqslant M \sum_{k \leqslant k_{0}}\left\|a_{k} p_{k}\right\| \leqslant\left(k_{0}+1\right) M\left\|P_{n}\right\| . \tag{11}
\end{equation*}
$$

For $k \in L$, we have (8) with k replaced by $k-1$. Therefore

$$
\Sigma_{2} \leqslant \sum_{k 0<k \leqslant n} k a_{k}\left\|p_{k-1}\right\| \frac{1}{2 k^{2}} \leqslant\left\|Q_{n}^{\prime}\right\| \sum_{k=1}^{\infty} \frac{1}{2 k^{2}}=(1-a)\left\|Q_{n}^{\prime}\right\|,
$$

where $a, 0<a<1$, is an absolute constant. This implies that

$$
\begin{equation*}
\Sigma_{3} \geqslant a\left\|Q_{n}^{\prime \prime}\right\| . \tag{12}
\end{equation*}
$$

Our last computation is different in the cases of Theorem 1 and Theorem 2. We note that

$$
\left|: P_{n}\right| \geqslant \sum_{k \in S} \frac{x}{k} k a_{k} x^{k-1} e^{-\omega(x)} .
$$

In the first case, with $c_{1}=a c$,

$$
\left\|P_{n}\right\| \geqslant c \sum_{k \in S} \frac{x_{k-1}}{k} k a_{k} x^{k-1} e^{-\omega(x)} \geqslant c_{1}\left\|Q_{n}{ }^{\prime}\right\| \min _{1 \leqslant k \leqslant n} \frac{1}{\omega^{\prime}\left(x_{k}\right)}
$$

Hence, by the assumptions of Theorem 1 and (5),

$$
\begin{align*}
\left\|Q_{n}{ }^{\prime}\right\| & \leqslant \frac{1}{c_{1}} \max _{1 \leqslant k \leqslant n} \omega^{\prime}\left(x_{k}\right)\left\|P_{n}\right\| \\
& \leqslant \frac{A}{c_{1}} \omega^{\prime}\left(x_{n}\right)\left\|P_{n}\right\| \leqslant \frac{A}{c_{1}}\left\|P_{n}\right\| \frac{\left\|p_{n}^{\prime}\right\|}{\| p_{n}^{i}!} . \tag{13}
\end{align*}
$$

From (10), (11), and (13) we obtain (2), since $\left\|p_{n}{ }^{\prime}\left|/|/| p_{n} \|\right.\right.$ bounded from below.
In the second case, since $x / k>\frac{1}{2}$ for $x \in S$,

$$
\begin{equation*}
\left\|P_{n}\right\|_{\geqslant}^{\prime} \geqslant \frac{1}{2} \sum_{k \in S} k a_{k} x^{k-1}\left\{e^{-\omega(x)}=\frac{1}{2} \Sigma_{3} \geqslant \frac{a}{2}\left\|Q_{n}^{\prime}\right\|,\right. \tag{14}
\end{equation*}
$$

and we obtain (7) from (10), (11), and (14).
We make some additional remarks. In [3], Szegö studied the order of magnitude of $\left|\cdot P_{n}{ }^{\prime}\right|:\left|\left|\left|P_{n}\right|\right.\right.$ for unrestricted polynomials P_{n}, for the norm $|f|=\sup _{x \geqslant 0}\left|f(x) e^{-x}\right|$ on $(0,+\infty)$. He obtained that this does not exceed $C_{0} n$. (For the Laguerre polynomials P_{n}, the quotient is $=n$.) In this case, the largest value of $\| p_{n}{ }^{\prime}\left|\cdot / j, p_{n}^{\prime}\right|$ is $=e$ for $n=1$; this quotient decreases and has limit 1 for $n \rightarrow \infty$. We see that $\left|P_{n}{ }^{\prime}\right|\left|/\left|\left|P_{n}\right|\right|\right.$ is much smaller for polynomials with positive coefficients, than in the general case.

It has been found [2] that the smallest possible constant C in (1) is $C=\boldsymbol{e}$. Of some interest is the smallest value of Szegö's constant C_{0}; this has not yet been determined. A possible conjecture is that this, too, is $C_{0}=e$.

References

1. G. G. LORENTZ, The degree of approximation by polynomials with positive coefficients. Math. Annal. 151 (1963), 239-251.
2. J. T. Scheick, Some problems in approximation theory. Unpublished doctoral dissertation, Syracuse University, June 1966.
3. G. Szegö, On some problems of approximation. Publ. Math. Inst. Hung. Acad. 9 (1964), 3-9.

[^0]: ${ }^{1}$ This work has been supported, in part, by the Contract No. AF49(638)-1401 of the Office of Scientific Research, U.S. Air Force.

