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Derivatives of Polynomials with Positive Coefficients!
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The paper [I] contains the following result. There exists a constant C >0
such that for each polynomial of the form P,(x) = D8 b, x*(1 — x)"%, b, >0,
“Pn'”/”Pn” < Cn, n= 19 2’ X (1)
for the uniform norm on [0, 1]. This relation can also be written

T
TRk

where p, are the special polynomials p,(x) = x".
In particular, (1) holds for polynomials with positive coefficients in x,

@

P(x)= é:o a, x, a,>0.

This follows from (1), but also immediately, since with P,, also P,’ is a poly-
nomial with positive coefficients, and since for such P,, ||P,j|=P,(1). In the
present note we prove the inequality (2) for the infinite interval (0, +), and
for a supremum norm with weight. The norm of a function f on (0, +x) is
given by

A= sup | f(x) e, 3

where w increases on (0, +). In addition to some mild smoothness require-
ments for w, we shall assume that w does not increase too slowly. Thus,
Theorem 2 allows w(x) = log? x, p > 1, but functions w(x) = 4 log x are, of
course, excluded.

In what follows, we shall assume that w(x) is a positive differentiable
function, defined for 0 < x < 40, increasing strictly to +w, and such that
also xw’(x) strictly increases to +. For each n=0, 1, ..., the maximum of
x"e"“( is attained at a unique point x = x,, given by

n=x,w'(x,). “@
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We have x, 7 += as n—> <. Another remark is that the behavior of
I'p, 1l p! is very much like that of n/x, = w'(x,):

"o n
<.[,p"”<~, n=2,3.... 5
Xn lpn“ Xn—1

This follows from the inequalities

I'p,,ll._— nxn1 *“'(X")< . p.1, n>1,

. n -
1pnll = —— xpg @ <

An—1 Xn—1

lpals  n>2.

The following two theorems deal, roughly, with the cases when w'(x)
increases and when it decreases.

THEOREM 1. Let w(x) satisfy the inequalities w(x) — w(0) < Axw'(x), x >0,
and o'(y) < Aw'(x), y <x, for some constant A= 0. (Both conditions are
satisfied if w' increases or if w’ decreases, but remains bounded away from
zero.) Then for some constant C > 0, inequality (2) holds for each polynomial
P, with positive coefficients.

THEOREM 2. Let ﬁrﬁw’(x) < 1 and assume that for some 0 <q < 1,

X—>0

w(x) < gxw’(x) log —-— for all sufficiently large x. 6)

()

Then for some constant C > 0,
1Py
< C, n=1,2,... 7
P, @

Note that if w’ is bounded, then according to (5), || g, i/llp.il < Const. The
proof depends upon the following

LeMMA. Let u, = 3k + 1)72. There exists a ko> 1 for which

e <Ue  k>k, ®)

if x and k satisfy x < k in case of Theorem 2 and x < cx,, in case of Theorem 1
(where ¢ > O is a constant).

Proof of the Lemma. Assume that (8) is violated for some k. Then

k log (x/x,) — w(x) + w(x,) = log u,. ¢))
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In case of Theorem 1, we have w(x,) — w(x) < 4Ax, w'(x;) = Ak; hence (9)
implies

klog (x/x) =—Adk +logu,=—(4+ Dk, k=k,
hence x/x, > ¢, c = e 4TD,

Likewise, in the case of Theorem 2, there is, according to (6), a kg so that,
for k > ko,

w(xy) <gk log———— <klog——<+logu,.

1 1
w'(x,) w'(xy)
Therefore, for k > ky, (9) implies

klog (x/x;) > k log w'(x;)

or x=x.0'(x) =k

To complete the proof of the theorems, let S = S(x,n) be the set of integers
k which satisfy ky < k < n and the inequality cx,_; < x (in case of Theorem 1)
or k— 1 < x (in case of Theorem 2). Let L be the remaining integers &k with
ko<k<n.

For a polynomial with positive coefficients,

Pn(t) = "Z A tk’
0

we put
Qn(t) = z a tk'

ko<ks<n

We can assume that ||Q,| >0, for if Q,(f) vanishes, the following proof is
simplified. Let x be such that Q,'(x) = ||Q,’]: (obviously, x; < x < x,). Then

Pl < Z kay || pi-ill + 119471 = 21 + Q0L (10)

”inll_ Z ka xk le—w(t)-}_ z Z;'2_LZ’13!

keS

say. With M = max (kll pr—ail/ PilDs
2i< Mk Zk lia pull < (kg + DYMIIP,|. 11
<ko

For k € L, we have (8) with k replaced by k — 1. Therefore

1 =1
2 < _ — < I Il . , :’
2< 2 kadipeill 55 <1171 kgl 2= A=l

where g, 0 <a < 1, is an absolute constant. This implies that

2y>alQ,]. (12)
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Our last computation is different in the cases of Theorem 1 and Theorem 2.
We note that

. X —1 -
[P, ] 22 Ekakx" L g=wix),
keS

In the first case, with ¢; =ac,

X . _ . .
~lkc—lk"kxk Le®®>ef Q)| min 1

kes I<ksgn w’(xk)'

1Pl = ¢

Hence, by the assumptions of Theorem 1 and (5),

1 .
19,11<— max w'(x)||P,]
Cl Igksn
A oo A el
< @GR = IR (13)

From (10), (11), and (13) we obtain (2), since || p,’||/i|2.]| bounded from below.
In the second case, since x/k > } for x € S,

. 1y a. .,
1P 3 ke e =12, > 510, (14

and we obtain (7) from (10), (11), and (14).

We make some additional remarks. In [3], Szeg6 studied the order of
magnitude of |P,|lf||P,|| for unrestricted polynomials P,, for the norm
1f1=sup [ f(x) €= on (0, +=). He obtained that this does not exceed Cyn.

x20
(For the Laguerre polynomials P,, the quotient is =n.) In this case, the
largest value of || p,’|'/| p/|is = efor n = 1; this quotient decreases and has limit
1 for n — . We see that |P,’||/|P,]| is much smaller for polynomials with
positive coefficients, than in the general case.

It has been found [2] that the smallest possible constant Cin (1) is C=e.
Of some interest is the smallest value of Szegd’s constant Cy; this has not yet
been determined. A possible conjecture is that this, too, is Cy = e.
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