JOURNAL OF APPROXIMATION THEORY 1, 1-4 (1968)

Derivatives of Polynomials with Positive Coefficients¹

G. G. LORENTZ

Department of Mathematics, Syracuse University, Syracuse, New York 13210

The paper [1] contains the following result. There exists a constant C > 0 such that for each polynomial of the form $P_n(x) = \sum_{k=0}^{n} b_k x^k (1-x)^{n-k}, b_k \ge 0$,

$$||P_n'||/||P_n|| \leq Cn, \quad n = 1, 2, \dots,$$
 (1)

for the uniform norm on [0, 1]. This relation can also be written

$$\frac{\|P_{n}'\|}{\|P_{n}\|} \leq C \frac{\|p_{n}'\|}{\|p_{n}\|},$$
(2)

where p_n are the special polynomials $p_n(x) = x^n$.

In particular, (1) holds for polynomials with positive coefficients in x,

$$P_n(x) = \sum_{k=0}^n a_k x^k, \qquad a_k \ge 0.$$

This follows from (1), but also immediately, since with P_n , also P_n' is a polynomial with positive coefficients, and since for such P_n , $||P_n|| = P_n(1)$. In the present note we prove the inequality (2) for the infinite interval $(0, +\infty)$, and for a supremum norm with weight. The norm of a function f on $(0, +\infty)$ is given by

$$||f|| = \sup_{x \ge 0} |f(x) e^{-\omega(x)}|, \qquad (3)$$

where ω increases on $(0, +\infty)$. In addition to some mild smoothness requirements for ω , we shall assume that ω does not increase too slowly. Thus, Theorem 2 allows $\omega(x) = \log^p x$, p > 1, but functions $\omega(x) = A \log x$ are, of course, excluded.

In what follows, we shall assume that $\omega(x)$ is a positive differentiable function, defined for $0 \le x < +\infty$, increasing strictly to $+\infty$, and such that also $x\omega'(x)$ strictly increases to $+\infty$. For each n = 0, 1, ..., the maximum of $x^n e^{-\omega(x)}$ is attained at a unique point $x = x_n$, given by

$$n = x_n \,\omega'(x_n). \tag{4}$$

¹ This work has been supported, in part, by the Contract No. AF49(638)-1401 of the Office of Scientific Research, U.S. Air Force.

^{© 1968} by Academic Press

¹

We have $x_n \not \to \infty$ as $n \to \infty$. Another remark is that the behavior of $||p_n'|'| ||p_n'||$ is very much like that of $n/x_n = \omega'(x_n)$:

$$\frac{n}{x_n} \le \frac{\|p_n'\|}{\|p_n\|} \le \frac{n}{x_{n-1}}, \qquad n = 2, 3, \dots$$
 (5)

This follows from the inequalities

$$||p_n|| = \frac{x_n}{n} n x_n^{n-1} e^{-\omega(x_n)} \leqslant \frac{x_n}{n} ||p_n'||, \qquad n \ge 1,$$
$$||p_n'|| = \frac{n}{x_{n-1}} x_{n-1}^n e^{-\omega(x_{n-1})} \leqslant \frac{n}{x_{n-1}} ||p_n||, \qquad n \ge 2.$$

The following two theorems deal, roughly, with the cases when $\omega'(x)$ increases and when it decreases.

THEOREM 1. Let $\omega(x)$ satisfy the inequalities $\omega(x) - \omega(0) \leq Ax\omega'(x), x \geq 0$, and $\omega'(y) \leq A\omega'(x), y \leq x$, for some constant A > 0. (Both conditions are satisfied if ω' increases or if ω' decreases, but remains bounded away from zero.) Then for some constant C > 0, inequality (2) holds for each polynomial P_n with positive coefficients.

THEOREM 2. Let
$$\lim_{x \to \infty} \omega'(x) < 1$$
 and assume that for some $0 < q < 1$,
 $\omega(x) \leq qx\omega'(x) \log \frac{1}{\omega'(x)}$ for all sufficiently large x. (6)

Then for some constant C > 0,

$$\frac{||P_n'|}{||P_n||} \leq C, \qquad n = 1, 2, \dots$$
 (7)

Note that if ω' is bounded, then according to (5), $||p_n'|/||p_n|| \leq \text{Const.}$ The proof depends upon the following

LEMMA. Let
$$u_k = \frac{1}{2}(k+1)^{-2}$$
. There exists a $k_0 \ge 1$ for which

$$\frac{x^k e^{-\omega(x)}}{\|p_k\|} < u_k, \qquad k \ge k_0,$$
(8)

if x and k satisfy x < k in case of Theorem 2 and $x < cx_k$ in case of Theorem 1 (where c > 0 is a constant).

Proof of the Lemma. Assume that (8) is violated for some k. Then

$$k \log (x/x_k) - \omega(x) + \omega(x_k) \ge \log u_k.$$
(9)

In case of Theorem 1, we have $\omega(x_k) - \omega(x) \le Ax_k \omega'(x_k) = Ak$; hence (9) implies

$$k \log (x/x_k) \ge -Ak + \log u_k \ge -(A+1)k, \qquad k \ge k_0,$$

hence $x/x_k \ge c$, $c = e^{-(A+1)}$.

Likewise, in the case of Theorem 2, there is, according to (6), a k_0 so that, for $k \ge k_0$,

$$\omega(x_k) \leqslant qk \log \frac{1}{\omega'(x_k)} < k \log \frac{1}{\omega'(x_k)} + \log u_k.$$

Therefore, for $k \ge k_0$, (9) implies

$$k \log (x/x_k) \ge k \log \omega'(x_k)$$
$$x \ge x_k \, \omega'(x_k) = k.$$

or

To complete the proof of the theorems, let S = S(x,n) be the set of integers k which satisfy $k_0 < k \le n$ and the inequality $cx_{k-1} \le x$ (in case of Theorem 1) or $k-1 \le x$ (in case of Theorem 2). Let L be the remaining integers k with $k_0 < k \le n$.

For a polynomial with positive coefficients,

$$P_n(t) = \sum_{0}^{n} a_k t^k,$$

we put

$$Q_n(t) = \sum_{k_0 < k \leq n} a_k t^k.$$

We can assume that $||Q_n|| > 0$, for if $Q_n(t)$ vanishes, the following proof is simplified. Let x be such that $Q_n'(x) = ||Q_n'||$ (obviously, $x_1 \le x \le x_n$). Then

$$||P_{n}'|| \leq \sum_{k \leq k_{0}} ka_{k} ||p_{k-1}|| + ||Q_{n}'|| = \Sigma_{1} + ||Q_{n}'||; \qquad (10)$$
$$||Q_{n}''|| = \sum_{k \in L} ka_{k} x^{k-1} e^{-\omega(x)} + \sum_{k \in S} = \Sigma_{2} + \Sigma_{3},$$

say. With $M = \max_{k \leq k_0} (k || p_{k-1} || / || p_k ||)$,

$$\Sigma_{1} \leq M \sum_{k \leq k_{0}} \|a_{k} p_{k}\| \leq (k_{0} + 1)M \|P_{n}\|.$$
(11)

For $k \in L$, we have (8) with k replaced by k - 1. Therefore

$$\Sigma_{2} \leq \sum_{\substack{k_{0} < k \leq n \\ k_{0} < k \leq n}} ka_{k} \|p_{k-1}\| \frac{1}{2k^{2}} \leq \|Q_{n}'\| \sum_{k=1}^{\infty} \frac{1}{2k^{2}} = (1-a) \|Q_{n}'\|,$$

where a, 0 < a < 1, is an absolute constant. This implies that

$$\Sigma_3 \ge a \|Q_n'\|. \tag{12}$$

Our last computation is different in the cases of Theorem 1 and Theorem 2. We note that

$$|P_n| \ge \sum_{k\in S} \frac{x}{k} ka_k x^{k-1} e^{-\omega(x)}.$$

In the first case, with $c_1 = ac$,

$$\|P_{n}\| \ge c \sum_{k \in S} \frac{x_{k-1}}{k} k a_{k} x^{k-1} e^{-\omega(x)} \ge c_{1} \|Q_{n}'\| \min_{1 \le k \le n} \frac{1}{\omega'(x_{k})}.$$

Hence, by the assumptions of Theorem 1 and (5),

$$||Q_{n}'|| \leq \frac{1}{c_{1}} \max_{1 \leq k \leq n} \omega'(x_{k}) ||P_{n}||$$

$$\leq \frac{A}{c_{1}} \omega'(x_{n}) ||P_{n}|| \leq \frac{A}{c_{1}} ||P_{n}|| \frac{||P_{n}'||}{||P_{n}||}.$$
 (13)

From (10), (11), and (13) we obtain (2), since $||p_n'||/||p_n||$ bounded from below. In the second case, since $x/k > \frac{1}{2}$ for $x \in S$,

$$\|P_{n}\| \ge \frac{1}{2} \sum_{k \in S} ka_{k} x^{k-1} e^{-\omega(x)} = \frac{1}{2} \Sigma_{3} \ge \frac{a}{2} \|Q_{n'}\|,$$
(14)

and we obtain (7) from (10), (11), and (14).

We make some additional remarks. In [3], Szegö studied the order of magnitude of $||P_n'||/||P_n||$ for unrestricted polynomials P_n , for the norm $||f| = \sup_{x \ge 0} |f(x) e^{-x}|$ on $(0, +\infty)$. He obtained that this does not exceed $C_0 n$.

(For the Laguerre polynomials P_n , the quotient is = n.) In this case, the largest value of $||p_n'||/|p_n|$ is = e for n = 1; this quotient decreases and has limit 1 for $n \to \infty$. We see that $|P_n'||/|P_n|$ is much smaller for polynomials with positive coefficients, than in the general case.

It has been found [2] that the smallest possible constant C in (1) is C = e. Of some interest is the smallest value of Szegö's constant C_0 ; this has not yet been determined. A possible conjecture is that this, too, is $C_0 = e$.

REFERENCES

- 1. G. G. LORENTZ, The degree of approximation by polynomials with positive coefficients. Math. Annal. 151 (1963), 239-251.
- 2. J. T. SCHEICK, Some problems in approximation theory. Unpublished doctoral dissertation, Syracuse University, June 1966.
- 3. G. SZEGÖ, On some problems of approximation. Publ. Math. Inst. Hung. Acad. 9 (1964), 3-9.